80x-x^2=102+20x

Simple and best practice solution for 80x-x^2=102+20x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80x-x^2=102+20x equation:



80x-x^2=102+20x
We move all terms to the left:
80x-x^2-(102+20x)=0
We add all the numbers together, and all the variables
-x^2+80x-(20x+102)=0
We add all the numbers together, and all the variables
-1x^2+80x-(20x+102)=0
We get rid of parentheses
-1x^2+80x-20x-102=0
We add all the numbers together, and all the variables
-1x^2+60x-102=0
a = -1; b = 60; c = -102;
Δ = b2-4ac
Δ = 602-4·(-1)·(-102)
Δ = 3192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3192}=\sqrt{4*798}=\sqrt{4}*\sqrt{798}=2\sqrt{798}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{798}}{2*-1}=\frac{-60-2\sqrt{798}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{798}}{2*-1}=\frac{-60+2\sqrt{798}}{-2} $

See similar equations:

| 5+6x=7x | | .4(2x+.5)=#(.2x+-2)-4 | | -5x+13=22 | | 5(4y+2)=6(2y-8)-4y | | 201=47-u | | 15=6(1/5x-15)+3x | | 10(4y+5)=5(5y-4)-2y | | 3y-11=5-y | | 6(3x-50-7x=25 | | 4x/9=8x-16 | | 90=12y-30 | | 9.25x+9=15.5x+14 | | -135=-51(-3+5x | | 3y-11=5y-y | | 7y+3=6(y+2) | | -23,5j-89,6=j+238,7 | | x8=7 | | 12=3x-42 | | 2t+21=4.5 | | 10+7n=5(-4n) | | 4/5(p-10)=8 | | 24(l)=2(1)+2(1/4) | | 3(x-9)=3(x+7) | | 8t+3t+-3t-16t=16 | | y/16=-21 | | 4x+8=-1+x+6x | | 11t-8t-t+1=13 | | 2(5x+4)=4(5x-6)-3x | | 11t–8t–t+1=13 | | x+(x+3)=27.5 | | -16p+p=15 | | 3(2m=4)=6(2+m |

Equations solver categories